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Kinetics of a migration-driven aggregation process with birth and death
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We propose an irreversible aggregation model driven by migration and birth-death processes with the
symmetric migration rate kernelK(k; j )5K8(k; j )5Ik j y, and the birth rateJ1k and death rateJ2k proportional
to the aggregate’s sizek. Based on the mean-field theory, we investigate the evolution behavior of the system
through developing the scaling theory. The total massM1 is reserved in theJ15J2 case and increases expo-
nentially with time in theJ1.J2 case. In these cases, the long-time asymptotic behavior of the aggregate size
distribution ak(t) always obeys the scaling law for they<2 case. This model may provide a more natural
description for diverse aggregation processes such as the evolution of the distribution of city population and
individual wealth.
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I. INTRODUCTION

Aggregations are popular and important phenomena
natural science with abound kinetic evolution behav
through their complex mechanisms@1–5#. Much research ef-
fort has been devoted to the growth of aggregates and
siderable understanding has been achieved on the evol
behavior of various aggregation processes over the past
decades@6–12#. The general mechanisms arising in diver
branches of physics are binary coalescence, annihilation,
so on. Recently, much attention has migrated to the aggr
tion phenomena in sociology and economy to investigate
kinetic behavior driven by some new mechanisms@13–16#.
Ispolatovet al. introduced several asset exchange models
the evolution of the wealth distribution in the economic
interaction population@17#, and Leyvraz and Redner pro
posed a migration-driven aggregate growth model for
evolution of city populations@18#. In these models, irrevers
ible growth of aggregates takes place through a migra
mechanism, where there exists preferential migrations
monomers~or equivalently, units of assets or persons! from
smaller aggregates to larger aggregates. The mechanism
be described by an irreversible reaction scheme,Ak1Al

→
K(k; l )

Ak211Al 11 (k< l ), where Ak denotes an aggregat
characterized only by its sizek andK(k; l ) is the migration
rate dependent on the sizes of the reactants. The solutio
the rate equation exhibited that the kinetics of this proc
obeys a very different scaling law from that of the conve
tional aggregation process. In fact, the class of the migrat
driven aggregation phenomena occurs in many branche
physics and social sciences@19#.

More generally, the migration could also go from a larg
aggregate to a smaller one as Leyvraz and Redner poi
out @18#. In our previous paper, we investigate the kinetics
the general migration-driven aggregation system, in wh
migration goes from the larger aggregates to the smalle
well as from the smaller to the larger@20#. The reaction rate
at which a monomer emigrates from the aggregateAk to the
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aggregateAj is K(k; j )}k jy and that a monomer immigrate
to the aggregateAk from the aggregateAj is K8(k; j )}k jy.
Herey is the migration rate kernel index, which may inte
pret the degree of ‘‘richness’’ in the population of a cit
When the value ofy increases, the city becomes much ge
erous in emigration and much greedy in immigration. W
find that for they<2 case, the evolution of the system a
ways obeys a conventional scaling law.

In fact, we should realize that the birth and death p
much more important roles in the evolution of the city pop
lation. Motivated by these new growth mechanisms, we
vestigate an aggregation process driven by migration
birth-death processes to model the city population evolut
process much really. The immigration and emigrati
schemes for the aggregateAk in our model areAk1Aj

→
K(k; j )

Ak111Aj
21 andAk1Al →

K8(k; l )

Ak211Al
11 , respectively.

Here Al
11 represents an aggregate with one temporary r

dent, andAj
21 denotes an aggregate with one tempora

empty resident. We assume that these two aggregates

immediately according to the schemeAl
111Aj

21 →
L( l ; j )

Al

1Aj with the reaction rateL( l ; j )→`. Meanwhile, the birth

and death schemes areAk →
J1(k)

Ak11 andAk →
J2(k)

Ak21, respec-
tively. Thus our model may be believed to mimic some s
cial and economical processes more naturally.

II. MODEL OF THE MIGRATION-DRIVEN
AGGREGATION PROCESS WITH BIRTH AND DEATH

We assume that the system has spatial homogeneity
that the fluctuations in the densities of the reactants are
nored and the aggregates are considered to be hom
neously distributed in the space throughout the proces
Thus, the theoretical approach to investigate the kinetics
the aggregation process can be based on the rate equa
which assumes that the reaction proceeds with a rate pro
tional to the reactant concentrations. Letak(t) be the con-
centration of the aggregatesAk at time t. We generalize the
rate equation of the migration-driven aggregation proc
given by Ref.@18# and write the corresponding rate equati
for our system as follows:
©2003 The American Physical Society03-1
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dak

dt
5(

j 51

`

K~k11; j !ak11aj1(
j 51

`

K8~k21; j !ak21aj

2(
j 51

`

@K~k; j !1K8~k; j !#akaj1J1~k21!ak21

2J1~k!ak1J2~k11!ak112J2~k!ak , ~1!

where we impose the boundary conditiona0(t)50.
For simplicity, we consider a model with a special migr

tion rate kernel. The rate of the aggregateAk gaining one
monomer from the aggregateAj or losing one monomer to
the aggregateAj through migration is directly proportional t
its sizek and j y, i.e., K(k; j )5K8(k; j )5Ik j y (I is a con-
stant!. This kernel may embody the conscious activity of t
aggregates in the exchange process. The rate of the aggr
Ak propagating or extinguishing one monomer is direc
proportional to its sizek, i.e., J1(k)5J1k and J2(k)5J2k
(J1 and J2 are two constants!. To modify the demographic
growth, which typically gives a population increasing exp
nentially with time@18#, we consider theJ1>J2 cases. With
the above mentioned reaction rate definition, Eq.~1! reduces
to

dak

dt
5IM y~ t !@~k11!ak1122kak1~k21!ak21#

1J1@~k21!ak212kak#1J2@~k11!ak112kak#,

~2!

where M y(t)5( j 51
` j yaj (t) are the moments of the aggre

gate size distributionak(t) .
We assume that there only exist the monomer aggreg

at t50 and the concentration is equal toA0. Then the initial
conditions areak(0)5A0dk1.

Equation~2! can be solved with the help of ansatz@9#

ak~ t !5A~ t !@a~ t !#k21. ~3!

Substituting Eq.~3! into Eq. ~2!, we can transform the rat
equation~2! into the following differential equations:

da

dt
5@ IM y~12a!1J12J2a#~12a!,

dA

dt
52@2IM y~12a!1~J11J222J2a!#A, ~4!

with the corresponding initial conditions

a50, A5A0 at t50. ~5!

From Eq.~4!, we can find the basic and important feature
a(t), i.e., a(t) grows monotonously from its initial value 0
to the steady state value 1 for theJ1>J2 case. To investigate
the kinetic behavior of the system thoroughly, we study E
~4! for the cases ofJ15J2 and ofJ1.J2.
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III. KINETICS OF THE SYSTEM IN THE J1ÄJ2 CASE

For theJ15J2 case, Eq.~4! reduces to

da

dt
5~ IM y1J1!~12a!2,

dA

dt
522~ IM y1J1!~12a!A.

~6!

From this set of equations, we can directly find out the re
tion betweenA(t) anda(t) as follows:

A~ t !5A0@12a~ t !#2. ~7!

This reveals the total mass of system conserved:

M15(
j 51

`

ja j5A(
j 51

`

ja j 215
A

~12a!2
[A0 . ~8!

To make a general analysis, we can use the property
the total mass of the system is conserved to rewrite Eq.~2! as
follows:

dak

dt
5F IM y~ t !1

J1

A0
M1G@~k11!ak1122kak

1~k21!ak21#. ~9!

From this equation, it immediately follows that theJ15J2
case reduces to the case without either birth or death@20#,
but whereIM v is replaced by the same with an addition
additive constantJ1. We can then directly reach a conclusio
that the case ofv equal to 1 is the marginal case between t
behavior dominated by the birth-death process a
migration-dominated behavior. Wheny.1, the long-time
evolution behavior of the system is dominated by the mig
tion and is the same with the case without either birth
death. Wheny,1, the first equation in Eqs.~6! reduces to

da

dt
.J1~12a!2. ~10!

This equation directly gives the asymptotic solutiona(t)
.12(J1t)21. The asymptotic aggregate size distribution
the long-time limit can then be obtained as follows:

ak~ t !.A0J1
22t22exp~2x!, x5k~J1t !21. ~11!

Equation~11! shows that for they,1 case, the aggregat
size distribution approaches the conventional scaling fo
@18#

ak~ t !.C0t2wF@k/S~ t !#, S~ t !}tz, ~12!

whereC0 is a constant andS(t) is the characteristic aggre
gate size of the system with its growth exponentz. It is clear
that the evolution behavior is dominated by the birth-de
process.

Wheny51, we can solve Eq.~6! exactly and obtain the
asymptotic solution of the aggregate size distributionak(t)
as follows:
3-2
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ak~ t !.A0~ IA01J1!22t22exp~2x!,

x5~ IA01J1!21kt21. ~13!

This shows that the evolution behavior is dominated by
birth-death process and migration equally.

IV. KINETICS OF THE SYSTEM IN THE J1ÌJ2 CASE

In this case, Eq.~4! directly gives the relation betwee
A(t) anda(t) as follows:

A~ t !5A0@12a~ t !#2e(J12J2)t. ~14!

From this we derive the total number of the clusters

M05(
j 51

`

aj5
A

~12a!
5A0~12a!e(J12J2)t, ~15!

and the total mass of the system is

M15(
j 51

`

ja j5
A

~12a!2
5A0e(J12J2)t. ~16!

This shows that the total mass of the system no longer
mains conserved, but grows exponentially with time, wh
is consistent with the demographic growth@18#.

Considering the general moment in thea(t) equation~4!,

M y5(
j 51

`

j yaj5A(
j 51

`

j yaj 21

5A0~12a!2e(J12J2)t(
j 51

`

j yaj 21. ~17!

We first consider several simple cases with integral indexy.
When y50, the moment isM05A0(12a)e(J12J2)t and

Eq. ~4! then becomes

da

dt
5@ IA0~12a!2e(J12J2)t1J12J2a#~12a!. ~18!

Introducing a new functiona(t) to make a transformation

a~ t !512a~ t !e2(J12J2)t, ~19!

we can transform thea(t) equation~18! into thea(t) equa-
tion as follows:

da

dt
52~ IA0a1J2!a2e2(J12J2)t. ~20!

Using the initial conditiona(0)51, we solve this equation
exactly and find that the functiona(t) satisfies the following
equation:
03110
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a
1

IA0

J2
ln

11
J2

IA0

11
J2

IA0a

5
J1

J12J2
2

J2

J12J2
e2(J12J2)t.

~21!

Then the asymptotic solution ofa(t) at large times is found
to be a constanta0 that satisfies

1

a0
1

IA0

J2
ln

11
J2

IA0

11
J2

IA0a0

.
J1

J12J2
. ~22!

In the end, we find the asymptotic solution fora(t),

a~ t !.12a0e2(J12J2)t, ~23!

and we further obtain the asymptotic solution ofak(t) in the
long-time limit as follows:

ak~ t !.A0a0
2e2(J12J2)texp~2x!, x5a0ke2(J12J2)t.

~24!

This shows that the aggregate size distribution obeys
generalized scaling behavior

ak~ t !.C0@ f ~ t !#2wF@k/S~ t !#, S~ t !}@ f ~ t !#z, ~25!

with f (t)5et and the exponents arew5z5J12J2 . In this
case, the total number of the aggregatesM05A0(1
2a)e(J12J2)t.a0A0 keeps a constant in the long-time limi

Wheny51, the moment isM15A0e(J12J2)t and Eq.~4!
then becomes

da

dt
5@ IA0~12a!e(J12J2)t1J12J2a#~12a!. ~26!

This equation can be solved exactly to yield

a~ t !512
e2(J12J2)t

IA0t2
J2

J12J2
e2(J12J2)t1

J1

J12J2

, ~27!

and in the long-time limit, it becomes

a~ t !.12~ IA0t !21e2(J12J2)t. ~28!

The asymptotic solution ofak(t) can then be obtained,

ak~ t !.A0~ IA0t !22e2(J12J2)texp~2x!,

x5k~ IA0t !21e2(J12J2)t. ~29!

It obeys a further generalized scaling behavior
3-3
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ak~ t !.C0@ f ~ t !#2w1@g~ t !#2w2F@k/S~ t !#,

S~ t !}@ f ~ t !#z1@g~ t !#z2, f 8~ t !, g8~ t !.0, ~30!

where f (t) and g(t) are unusual functions of time, such a
et, lnt, 2t, and so on. Heref (t)5t andg(t)5et. In this case,
the total number of the aggregates,M05A0(12a)e(J12J2)t

.(It )21, decays with time ast21 in the long-time limit.
Wheny52, the moment is

M25(k51
` k2ak5A0~11a!~12a!21e(J12J2)t

and Eq.~4! then becomes

da

dt
5@ IA0~11a!e(J12J2)t1J12J2a#~12a!. ~31!

In the long-time limit, it is obvious thatIA0(11a)e(J12J2)t

@J12J2a. Equation~31! can be reduced to

da

dt
.IA0~11a!~12a!e(J12J2)t. ~32!

We solve this equation to get the solution fora(t),

a~ t !.122e2g1e(J12J2)t
, ~33!

whereg152IA0 /(J12J2), and we further obtain the long
time asymptotic solution ofak(t) as

ak~ t !.4A0e22g1e(J12J2)t
e(J12J2)texp~2x!,

x52ke2g1e(J12J2)t
. ~34!

This shows that the aggregate size distribution obeys a
complicated scaling behavior

ak~ t !.C0$ f ~@g~ t !#w2!%2w1@g~ t !#w3F@k/S~ t !#,

S~ t !}$ f ~@g~ t !#z2!%z1@g~ t !#z3, f 8~ t !,g8~ t !.0, ~35!

where f (t) and g(t) are unusual functions of time, such a
et, lnt, 2t, and so on. Heref (t)5et and g(t)5et. In this
case, the total number of aggregates is

M0.2A0e2g1e(J12J2)t
e(J12J2)t. ~36!

It decays much faster than that in they51 case.
Now we turn to the general cases. From Eqs.~14!–~16!,

we have

a512
M0

M1
, A5A0~12a!2e(J12J2)t5

M0
2

M1
. ~37!

The average cluster size becomesS(t)5M1 /M0@1 in the
long-time limit because of the aggregation effect. The clus
distribution ak(t) can be expressed in the uniform scali
form as
03110
ry
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ak~ t !.
@M0~ t !#2

M1~ t !
exp~2x!, x5k/S~ t !. ~38!

Now we investigate the kinetic behavior ofak(t) through
finding the asymptotic solution ofM0(t). Summing up the
governing rate equation~2!, we obtain the equation about th
zero-order momentM0,

dM0

dt
52~ IM y1J2!a1 , ~39!

where a15A5M0
2/M1 and the initial condition isM0(0)

5A0. Here we also try to find out the asymptotic solution
M0(t) at large times. In the long-time limit, using the scalin
form of ak(t) of Eq. ~38! we obtain the estimation ofM y(t)
as

M y~ t !5(
j 51

`

j yaj.FM1~ t !

M0~ t !G
y11 @M0~ t !#2

M1~ t ! E
0

`

xye2xdx

5G~11y!@M1~ t !#y@M0~ t !#12y. ~40!

The M0 equation~39! can further be written approximatel
as follows:

dM0

dt
.2@ IG~11y!M1

yM0
12y1J2#

M0
2

M1
. ~41!

BecauseM0 /M1!1 in the long-time limit, we can solve the
above equation and obtain the asymptotic solution ofM0 in
several cases.

Wheny,0, Eq. ~41! reduces to

dM0

dt
.2J2

M0
2

M1
. ~42!

This equation directly gives the asymptotic solutionM0
.C1A0. Here the constantC1 cannot be determined becau
the initial condition is not valid for the asymptoticM0 equa-
tion. The aggregate size distributionak(t) in the long-time
limit can then be obtained from Eq.~38!,

ak~ t !.C1
2A0e2(J12J2)texp~2x!, x5C1ke2(J12J2)t,

~43!

which is the same as the solution in they50 case obeying
the generalized scaling behavior as Eq.~25! with f (t)5et

and the exponentsw5z5J12J2. Moreover, using the mo-
ment M 215( j 51

` j 21aj52A0(12a)2 $@ ln(1
2a)#/a%e(J12J2)t, we can derive thea(t) equation for this case
from Eq. ~4! as follows:

da

dt
5F2IA0~12a!3

ln~12a!

a
e(J12J2)t1J12J2aG~12a!.

~44!
3-4
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From this equation, we also obtain the same results as in
y50 case of Eqs.~23! and ~24! with a05J1 /J221.

When y51, we find IG(11y)M1
yM0

12y5IM 1@J2 and
Eq. ~41! reduces to

dM0

dt
.2IM 0

2 . ~45!

It directly givesM0.(It )21 and the same resultak(t) of Eq.
~29!, which is obtained from thea(t) equation.

Now we turn to the generaly.0 case. From the abov
results ofM0.a0A0 in they50 case andM0.(It )21 in the
y51 case, we can find thatM1

y grows with time much faste
thanM0

12y decreases in the 0,y,1 case. So for the genera
y.0 case, we can draw a conclusion thatIG(1
1y)M1

yM0
12y@J2 in Eq. ~41! , and we finally derive theM0

equation for the general case ofy.0 as

dM0

dt
.2IG~11y!M0

32yM1
y21 . ~46!

When 0,y,1, we find the solution ofM0 as

M0.C2A0 , ~47!

where the constantC2 cannot be determined because t
initial condition is not valid. The aggregate size distributi
ak(t) can then be obtained from Eq.~38! as follows:

TABLE I. Summary of the results inJ1.J2 cases.

Case
Asymptotic behavior of the aggregate

size distributionak(t)

y,1 Obeys the generalized scaling law
dominated by the birth-death process

ak(t).C2A0e2(J12J2)texp(2x),
x5Cke2(J12J2)t

y51 Obeys the further generalized scaling law
dominated by the birth-death process

ak(t).A0(IA0t)22e2(J12J2)texp(2x),
x5k(IA0t)21e2(J12J2)t

1,y,2 Obeys the generalized scaling law
dominated by both migration and
birth-death processes

ak(t).C4
2A0e2[ y/(22y)](J12J2)texp(2x),

x5C4ke2[1/(22y)](J12J2)t

y52 Obeys the much complicated scaling law
dominated by both migration and
birth-death processes

ak(t).4A0e2[4IA0 /(J12J2)] e(J12J2)t

3e(J12J2)texp(2x),

x52ke2[2IA0 /(J12J2)]e(J12J2)t
03110
he

ak~ t !.C2
2A0e2(J12J2)texp~2x!, x5C2ke2(J12J2)t.

~48!

Meanwhile, for the 1,y,2 case we find the solution of Eq
~46! as

M0.C3A0e2g2(J12J2)t, ~49!

where g25(y21)/(22y) and C35@g2(J12J2)/G(1
1y)IA0#1/(22y). The aggregate size distributionak(t) can
then be obtained from Eq.~38! as follows:

ak~ t !.C3
2A0e2y(J12J2)t/(22y)exp~2x!,

x5C3ke2(J12J2)t/(22y). ~50!

This showsak(t) satisfies the generalized scaling behavior
Eq. ~25! with the scaling functionf (t)5et. The scaling ex-
ponents are w5y(J12J2)/(22y) and z5(J12J2)/(2
2y). However, theM0(t) equation~46! doesnot give a rea
solution in the case ofy.2. It implies that the system ma
also undergo a gelationlike transition in this case and ther
no longer the scaling behavior.

V. SUMMARY

In summary, we have proposed an irreversible aggre
tion model driven by migration and birth-death process
with the symmetric migration rate kernelK(k; j )5K8(k; j )
5Ik j y, and the birth rateJ1k and death rateJ2k proportional
to the aggregate’s sizek. Based on the mean-field theory, w
investigated the evolution behavior of the aggregate size
tribution through developing the scaling theory. We fou
that the large-time behavior of the aggregate size distribu
depends on the competition among three reaction ra
When the rate kernel of birthJ1 and that of deathJ2 are
equal, the total massM1 is reserved and the aggregate si
distributionak(t) obeys the conventional or generalized sc
ing law for the case of migration rate kernel indexy<2. The
migration will play a more and more important role on th
kinetic behavior of the system as the indexy increases.

When J1.J2, the total massM1 is no longer reserved
and increases exponentially with time as the demograp
growth reveals. In this case, the aggregate size distribu
ak(t) obeys the generalized or much complicated scaling
in the y<2 case as illustrated in Table I and the migrati
will play a more and more important role asy increases.
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