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Kinetics of a migration-driven aggregation process with birth and death
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We propose an irreversible aggregation model driven by migration and birth-death processes with the
symmetric migration rate kern&l(k;j)=K'(k;j)=1kj", and the birth ratd,k and death raté,k proportional
to the aggregate’s sidze Based on the mean-field theory, we investigate the evolution behavior of the system
through developing the scaling theory. The total mislssis reserved in thd;=J, case and increases expo-
nentially with time in thel;>J, case. In these cases, the long-time asymptotic behavior of the aggregate size
distribution a,(t) always obeys the scaling law for the<2 case. This model may provide a more natural
description for diverse aggregation processes such as the evolution of the distribution of city population and
individual wealth.
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[. INTRODUCTION aggregateé\; is K(k;j)>=kj” and that a monomer immigrates
to the aggregaté, from the aggregatd; is K'(k;j)=Kkj".

Aggregations are popular and important phenomena itderev is the migration rate kernel index, which may inter-
natural science with abound kinetic evolution behaviorpret the degree of “richness” in the population of a city.
through their complex mechanisrs-5]. Much research ef- When the value ob increases, the city becomes much gen-
fort has been devoted to the growth of aggregates and cogrous in emigration and much greedy in immigration. We
siderable understanding has been achieved on the evolutidid that for thev<2 case, the evolution of the system al-
behavior of various aggregation processes over the past feWays obeys a conventional scaling law.
decadeg6-17. The general mechanisms arising in diverse !N fact, we should realize that the birth and death play
branches of physics are binary coalescence, annihilation, afguch more important roles in the evolution of the city popu-
so on. Recently, much attention has migrated to the aggregi@tion- Motivated by these new growth mechanisms, we in-
tion phenomena in sociology and economy to investigate thy¥eStigate an aggregation process driven by migration and
kinetic behavior driven by some new mechanigh3—16. irth-death processes to mode_zl the_z C|ty population e_volufuon
Ispolatovet al. introduced several asset exchange models foPf0C€ss much really. The immigration and emigration
the evolution of the wealth distribution in the economical SChemes for the aggrega in our model areAc+ A,
interaction popqlatior[l?], and Leyvraz and Redner pro- Ki”AkHJFAﬂ andAkJrAlKﬂi")Ak_lJrAlﬂ, respectively.
posed a migration-driven aggregate growth model for thﬁ_| e ith -
evolution of city population$18]. In these models, irrevers- ere A/~ represents an aggregate with one temporary resi

71 .
ible growth of aggregates takes place through a migratiof€Nt; andA; = denotes an aggregate with one temporary
mechanism, where there exists preferential migrations ofMPY resident. We assume that these two aggregates react

i i L(lj
monomers(or equivalently, units of assets or perspfrem immediately according to the schem@ﬁ1+Aj‘1 (_:)Al

smaller aggregates to larger aggregates. The mechanism cgrhj with the reaction raté (1;j)—o. Meanwhile, the birth

be described by an irreversible reaction schemgt A, Jy(K) Jo(K)
K(k;1)

— A 1tA 1 (k=I), where A, denotes an aggregate
characterized only by its sizeandK(k;l) is the migration
rate dependent on the sizes of the reactants. The solution
the rate equation exhibited that the kinetics of this process
obeys a very different scaling law from that of the conven-
tional aggregation process. In fact, the class of the migration-
driven aggregation phenomena occurs in many branches of We assume that the system has spatial homogeneity, so
physics and social sciencgk9]. that the fluctuations in the densities of the reactants are ig-

More generally, the migration could also go from a largernored and the aggregates are considered to be homoge-
aggregate to a smaller one as Leyvraz and Redner pointatbously distributed in the space throughout the processes.
out[18]. In our previous paper, we investigate the kinetics ofThus, the theoretical approach to investigate the kinetics of
the general migration-driven aggregation system, in whichhe aggregation process can be based on the rate equation,
migration goes from the larger aggregates to the smaller aghich assumes that the reaction proceeds with a rate propor-
well as from the smaller to the largE20]. The reaction rate tional to the reactant concentrations. lag(t) be the con-
at which a monomer emigrates from the aggregatéo the  centration of the aggregatés at timet. We generalize the

rate equation of the migration-driven aggregation process
given by Ref[18] and write the corresponding rate equation

*Electronic address: linzhenquan@yahoo.com.cn for our system as follows:

and death schemes at¢ — A, andA, — A,_4, respec-
tively. Thus our model may be believed to mimic some so-
F&al and economical processes more naturally.

Il. MODEL OF THE MIGRATION-DRIVEN
AGGREGATION PROCESS WITH BIRTH AND DEATH
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day * * Ill. KINETICS OF THE SYSTEM IN THE J;=J, CASE

W:'El K(k+1;j)ak+laj+j2l K'(k—=1;j)ax-13a;

= For theJ;=J, case, Eq(4) reduces to

= _ . da , dA
—El [K(k;))+K'(k;))]aa;+ I (k—Day_ 4 a=(IMU+J1)(1—a) T -2(IM ,+J))(1—-a)A.
j=
(6)
—Ji(K)ag+Ja(k+1)ag. 1~ Ja(K)ay, () _ _ . _
From this set of equations, we can directly find out the rela-
where we impose the boundary conditiag(t)=0. tion betweerA(t) anda(t) as follows:
For simplicity, we consider a model with a special migra- )
tion rate kernel. The rate of the aggregdtg gaining one A(t)=Ao[1—a(t)]". 0
monomer from the aggrega#g or losing one monomer to ) )
the aggregaté; through migration is directly proportional to This reveals the total mass of system conserved:
its sizek and ¥, i.e., K(k;j)=K'(k;j)=I1kj? (I is a con- w o
stan). This kernel may embody the conscious activity of the A -l —
aggregates in the exchange process. The rate of the aggregate My ,Zl 18 Ajgl 2 (1-a)? Ao- ®

Ay propagating or extinguishing one monomer is directly

proportional to its size, i.e., J;(k)=J;k and J,(k)=J,k To make a general analysis, we can use the property that
(J; andJ, are two constanjs To modify the demographic the total mass of the system is conserved to rewrite Bcas
growth, which typically gives a population increasing expo-follows:

nentially with time[18], we consider thd,;=J, cases. With

the above mentioned reaction rate definition, &9.reduces dilk: IM (1) + ﬁMl [(k+1)ay, ;— 2ka,

to dt A
day +(k—1)ay-1]. ©)
Gt = Mu(OL(k+ a1~ 2ka+ (k= 1)ax-4]

From this equation, it immediately follows that the=J,
+Ji[(k—1)ay— 1 —ka]+ o[ (k+1)ay; —kay], case reduces to the case without either birth or df2h
but wherelM , is replaced by the same with an additional
2 additive constani;. We can then directly reach a conclusion
P that the case af equal to 1 is the marginal case between the
where M(t)==/_,j"a(t) are the moments of the aggre- penayior dominated by the birth-death process and
gate size distributiomy(t) . ) migration-dominated behavior. Whem>1, the long-time
We assume that there only exist the monomer aggregates o|ution behavior of the system is dominated by the migra-
att=0 and the concentration is equalAg. Then the initial  jon and is the same with the case without either birth or

conditions area,(0)=Agdia. death. Wherv<1, the first equation in Eq$6) reduces to
Equation(2) can be solved with the help of ans4&q

da

at)=AMlam ] 3 PraS S (10

Subst.ituting.Eq.(S) into Eq.(2),_we can transfo_rm the rate This equation directly gives the asymptotic solutiaft)
equation(2) into the following differential equations: ~1—(J,t)~L. The asymptotic aggregate size distribution in

d the long-time limit can then be obtained as follows:
a
gt UMy (1=a)+d; = Jal(1-a), a(t)=Agd; %t 2exp(—x), x=k(J;t)"1. (12

Equation(11) shows that for thev<1 case, the aggregate

T —[2IM (1—a)+(J;+Jr,—2J5a)]A, (4) size distribution approaches the conventional scaling form
[18]
with the corresponding initial conditions a(t)=Cgt "d[KIS(1)], S(t)=t?, (12)
a=0, A=A, att=0. (5  whereC, is a constant and(t) is the characteristic aggre-

gate size of the system with its growth exponent is clear
From Eq.(4), we can find the basic and important feature ofthat the evolution behavior is dominated by the birth-death
a(t), i.e.,a(t) grows monotonously from its initial value O process.
to the steady state value 1 for thg=J, case. To investigate Whenv=1, we can solve Eq6) exactly and obtain the
the kinetic behavior of the system thoroughly, we study Eqasymptotic solution of the aggregate size distributig(t)
(4) for the cases 08,=J, and ofJ;>J,. as follows:
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a(t)=Ag(1Ag+J;) %t 2exp(—Xx),

x=(1Ag+J;) kt 1, (13

This shows that the evolution behavior is dominated by the

birth-death process and migration equally.

IV. KINETICS OF THE SYSTEM IN THE J;>J, CASE

In this case, Eq(4) directly gives the relation between

A(t) anda(t) as follows:
A(t)=Aq[1—a(t)]?eP1~ 2!, (14)

From this we derive the total number of the clusters

. A
Mo= 21 aj==—— =Ag(1—a)el1~ 2,

i-a) (15
and the total mass of the system is
Mlzi jai= A =Apel1792t, (16)
= (1-a)?

This shows that the total mass of the system no longer refhis shows that the aggregate size distribution obeys the
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142
1,0 A0 e
o \]2 14 \]2 ‘]l_JZ \]l_\]z

|Aoa

(21)

Then the asymptotic solution af(t) at large times is found
to be a constant, that satisfies

14 2
1 1A, 1A, Ji
—+ —1In = . (22
[£7)) ‘JZ 14 J2 Jl_Jz
IAoa’O
In the end, we find the asymptotic solution f@aft),
a(t)=1—age U179t (23

and we further obtain the asymptotic solutionag{t) in the
long-time limit as follows:
ag(t)=Agase U1 9lexg —x), x=aoke (1732t
(24)

mains conserved, but grows exponentially with time, whichgeneralized scaling behavior

is consistent with the demographic growis].
Considering the general moment in th@) equation(4),

M,=2, j'aj=AY, j"al
i=1 =1

=Ag(1—a)2el17 92ty jrai~1,

=1

17

We first consider several simple cases with integral index

When v=0, the moment iMy=Ay(1—a) e1=32t gand
Eq. (4) then becomes

da
5t =[1Ay(1—a)%eP1 9+ 3 —J,a](1—a). (18

Introducing a new functiom(t) to make a transformation

a(t)=1—a(t)e V13" (19
we can transform tha(t) equation(18) into the «(t) equa-
tion as follows:

da

T (IAga+J,) e G192t (20)
Using the initial conditione(0)=1, we solve this equation
exactly and find that the functiosm(t) satisfies the following
equation:

ax()=Co[ ()] "@[k/S()], S(=[f()]* (25
with f(t)=e' and the exponents awe=z=J,—J, . In this
case, the total number of the aggregathk,=Aq(1
—a)el1 9= 4 A, keeps a constant in the long-time limit.

Whenv=1, the moment isvl;=A,e"17 92! and Eq.(4)
then becomes

da— (J1= It
a—[le(l—a)e +J;—J,al(1—a). (26
This equation can be solved exactly to yield
ef(‘Jlf‘]Z)t
a(t)=1- . @)
IAgt— J2 e (1-d)ty L
Jl_‘]2 1_‘]2
and in the long-time limit, it becomes
a(t)=1—(1Aqt) te G132, (28

The asymptotic solution od,(t) can then be obtained,
ax(t)=Ag(IAqt) e~ V17 2exp( —x),
x=k(IAgt) te~ U173t (29

It obeys a further generalized scaling behavior
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a(t)=Col f(t)]™"[g(t)]"2P[k/S(1)],

£ (1),

wheref(t) andg(t) are unusual functions of time, such as

e', Int, 2!, and so on. Her&(t) =t andg(t) =¢€'. In this case,

the total number of the aggregatdd,=A,(1—a)el1 2}

=(It) "%, decays with time as ! in the long-time limit.
Whenv=2, the moment is

S(H=[f(t)]2[g(t)]?, g'()>0, (30

M,==¢_ k*a,=Ag(l+a)(l—a) tel1 It

and Eq.(4) then becomes
da
gt ~[Ao(1+a)et ™24 3, -Jpal(1-a).  (3D)

In the long-time limit, it is obvious thattAy(1+ a)et1J2)t
>J;—J,a. Equation(31) can be reduced to

da (31— It
azle(lJra)(l—a)e 172 (32
We solve this equation to get the solution ft),
a(t)=1-2e 1" (33)

where y;=2IA,/(J;—J,), and we further obtain the long-
time asymptotic solution o&,(t) as

a(t)=4Age 271" g1 Dltgyny —x),

At

x=2ke~ 71e™ (34)

This shows that the aggregate size distribution obeys a very

complicated scaling behavior
a(t)=Coff([g(t)]"2)} ™[ g() "3 D[k/S(1)],
S({f([g() ]2} [g(t) ],

wheref(t) andg(t) are unusual functions of time, such as

e', Int, 2, and so on. Herd(t)=e' and g(t)=e€". In this
case, the total number of aggregates is

f'(t),9'(1)>0, (39

Mo=2Age~ 718" (12t (36)
It decays much faster than that in the1 case.

Now we turn to the general cases. From E{<)—(16),
we have

2

M
. A=Ag(1— a)ze(Jl_‘]Z)t:_o_
My

Mo
a—l—M—l

(37

The average cluster size beconf®&s)=M,/My>1 in the

long-time limit because of the aggregation effect. The clusterd_a

distribution a,(t) can be expressed in the uniform scaling
form as

PHYSICAL REVIEW E 67, 031103 (2003

[Mo(D)]?

ML (1) (38

a(t)= exp—x), x=Kk/S(t).

Now we investigate the kinetic behavior af(t) through
finding the asymptotic solution d¥1,(t). Summing up the
governing rate equatiof2), we obtain the equation about the
zero-order momeniti,

—(IM,+Jy)ay, (39

dMg
dt
where alezMglMl and the initial condition isM(0)
=A,. Here we also try to find out the asymptotic solution of
Mo(t) at large times. In the long-time limit, using the scaling

form of a,(t) of Eq. (38) we obtain the estimation dfl (t)
as

oo

)

The M, equation(39) can further be written approximately
as follows:

M(1)
Mo(1)

vHMo(t)]?
M(1)

xVe”*dx

M ()= >, j"aj:{
j=1

=T(1+9)[My(D]TMo()] " (40)

2

dM, L M2
[|F(1+U)MZMO U+J2]M—.
1

T (47
BecauseM /M <1 in the long-time limit, we can solve the
above equation and obtain the asymptotic solutioMgfin
several cases.

Whenv<0, Eq.(41) reduces to

M3

dMo
~—Jp

dt

(42

This equation directly gives the asymptotic solutidvh
=C,;A,. Here the constar,; cannot be determined because
the initial condition is not valid for the asymptotid, equa-
tion. The aggregate size distributi@y(t) in the long-time
limit can then be obtained from E¢38),
a (t)=C2Ase U1 lexpg —x), x=C ke U173
(43

which is the same as the solution in the 0 case obeying
the generalized scaling behavior as E25) with f(t)=¢'
and the exponente=z=J,;—J,. Moreover, using the mo-
ment M_;=3_,j aj=—Ao(1-a)*{[In(1
—a))/a}eV1%" we can derive tha(t) equation for this case
from Eq. (4) as follows:

In(1—a)
dt=| Al —

e(Jl‘Jz)tJrJl—Jza}(l— a).
(44)
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TABLE I. Summary of the results id,>J, cases.

Asymptotic behavior of the aggregate

Case size distributiona,(t)

v<l Obeys the generalized scaling law

dominated by the birth-death process
a(t)=C?A e~ U1 9lexp(—x),
X:Cke’(Jlsz)t
Obeys the further generalized scaling law
dominated by the birth-death process

ay(t)=Ao(IAt) 2™ V17 2'exp(-x),
x=Kk(IAqt) "te~ U1t
Obeys the generalized scaling law
dominated by both migration and
birth-death processes
ak(t)zCiAOef[”/(27")](JlfJZ)teXp(—x),
x=C ke [ I@1- %)t
Obeys the much complicated scaling law
dominated by both migration and
birth-death processes

1<v<2

ay (1) =A4Age~ 4140 /01=3)] &Ci2)!
x elJ1792lexp(—x),

x=2ke~[21A0 /(3= )€l 22!
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X= Czke_ (Jl_Jz)t.
(48)

ay(t)=C3Age 17 92%exp( —x),

Meanwhile, for the K v<2 case we find the solution of Eq.
(46) as

Mo=CzAge 720173, (49

Whel‘e ’)’22(1}_ 1)/(2_ U) a.nd C3=[’)/2(J1_\]2)/F(1
+0)1A,]¥?~ Y. The aggregate size distributiam(t) can
then be obtained from E@38) as follows:

ay(t)=C3Ace "1V Vexny —x),

X:CBKef(JrJz)t/(Z*v)_ (50)

This showsa,(t) satisfies the generalized scaling behavior as
Eq. (25) with the scaling functiorf(t)=e'. The scaling ex-
ponents arew=uv(J;—J,)/(2—v) and z=(J;—J,)/(2
—v). However, theMy(t) equation(46) doesnot give a real
solution in the case of>2. It implies that the system may
also undergo a gelationlike transition in this case and there is

From this equation, we also obtain the same results as in tH2P longer the scaling behavior.

v=0 case of Eqs(23) and (24) with ag=J,/J,—1.
Whenv=1, we find IT(1+v)M!M$ "=IM>J, and
Eq. (41) reduces to

Tz—ll\/lg. (45)

It directly givesM ,=(It) ~! and the same resui (t) of Eq.
(29), which is obtained from tha(t) equation.

Now we turn to the general>0 case. From the above
results ofM g=ayA, in thev=0 case and,=(It) ! in the
v=1 case, we can find thad ] grows with time much faster
thanM} ¥ decreases in theQu<1 case. So for the general
v>0 case, we can draw a conclusion thaf'(1
+1)MIMS">J, in Eq. (41) , and we finally derive th/,
equation for the general case @0 as

M
d—t‘):—|r(1+v)Mg‘”M;‘l.

(46)
When 0<v<1, we find the solution oM as

M02C2A0, (47)

V. SUMMARY

In summary, we have proposed an irreversible aggrega-
tion model driven by migration and birth-death processes
with the symmetric migration rate kern#&l(k;j)=K’'(k;]j)
=1kj?, and the birth ratd,k and death ratd,k proportional
to the aggregate’s size Based on the mean-field theory, we
investigated the evolution behavior of the aggregate size dis-
tribution through developing the scaling theory. We found
that the large-time behavior of the aggregate size distribution
depends on the competition among three reaction rates.
When the rate kernel of birtld; and that of deathl, are
equal, the total mashl, is reserved and the aggregate size
distributiona,(t) obeys the conventional or generalized scal-
ing law for the case of migration rate kernel index2. The
migration will play a more and more important role on the
kinetic behavior of the system as the indeincreases.

When J;>J,, the total masdM, is no longer reserved
and increases exponentially with time as the demographic
growth reveals. In this case, the aggregate size distribution
a,(t) obeys the generalized or much complicated scaling law
in the v<2 case as illustrated in Table | and the migration
will play a more and more important role asincreases.
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